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1 Detailed experimental analysis and discussion

Here, We present more results and explanations. We begin by showing the detailed config-
uration of the proposed network and its superior performance on the depth estimation task
both on synthetic and real image, which is followed by non-uniform deblurring.

Network Architecture

The proposed network configuration for depth estimation, using dense patch pooling, is
based on VGG16 [9]. We densely sampled 15k patches for each image over a regular grid.
The configuration of our network is shown in the Table 1.

Layer 1-2 3-4 5-7 8-10 11-13 14-15 16
Type conv+relu conv+relu conv+relu conv+relu conv+relu ip+relu ip+interp

Filter Size 3×3 3×3 3×3 3×3 3×3 - -
No. of Filter 64 128 256 512 512 4k 20

Pooling max max max max patch - -

Table 1: Network configuration for our depth estimation, using dense patch pooling, is based
on VGG16 [9]. For brevity, we use conv for convolutional layer, relu for activation function,
ip for inner product and interp for bilinear upsampling.

Depth Estimation

We compared proposed method results with state-of-the-art depth prediction methods on
standard benchmark datasets. The qualitative results are shown in Fig. 1. It is important to
note that our method not only captured the depth accurately for the near objects in the scene
but for far objects as well.
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Removing Non-uniform Blur
We evaluate our blur removal method on test images from NYU-v2. Figure 2 shows the
results generated by our and competing methods for different images. Our algorithm attains
higher visual quality than its counterparts. It is observed that our algorithm is able to restore
high-frequency texture details with a closer resemblance to the ground-truth than existing
methods due to estimating blur kernels from depth layers.

Original Defocused Groundtruth DFD [1] DT [4] DCNF [7] Ours
Figure 1: Qualitative comparison of our depth estimation method on Make3D [8] dataset
with state-of-the-art depth prediction methods. Our method correctly predicted the depth
levels. Depths are shown in color where red is far and blue is near.

Defocused Predicted Whyte [10] Cho [2]
Image depth 28.63 dB 30.39 dB

Original Image
Xu [11] Levin [6] Krishnan [5] Ours

29.84 dB 29.43 dB 31.26 dB 33.97 dB
Figure 2: Qualitative comparison of our deblurring results on NYU-v2 [8] dataset with state-
of-the-art deblurring methods. The difference can be seen in the red box and best viewed at
higher magnification.

In Fig. 2, the highly-textured patterns on walls are adeptly reproduced by our algorithm,
while these details are not clearly visible in the results of the other methods. In this example,
most of the other methods tend to smoothen out the variation of the background texture along
one of its principal directions. Furthermore, some methods introduce additional artifacts and
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Real Image DFD [1] Eigen et al. [3] DCFN [7] Ours
Figure 3: Images are real defocused photos with unknown blur and qualitative comparison
shows significant improvement over state-of-the-art depth prediction methods. Our method
benefits from the amount of blur in the real images whereas other methods rely on the color
and shape of the object which fails to recover the depth.

artificial textures.

2 Real Out-of-focus Images
In our last experiment, we evaluate the proposed method on the real-world out of focus face
image. Comparison with state-of-the-art methods [4, 7, 8] are shown in figure 3.

In this example, there are approximately two layers of blur corresponding to different
levels. Our method put the face and background in different depth levels by exploiting the
blur while [7] generates sharp boundaries for face but puts different level of depth for the
same face layer. Thus, making our method more useful in practical situation in the presence
of non-uniform blur. As compared to others, our method outperformed.
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